SYNTHESIS OF t-BUTYL AND METHYL PEROXYNITRATE

E.F.J. Duynstee, J.G.H.M. Housmans, J. Vleugels and W. Voskuil

Central Laboratory, Staatsmijnen/DSM, Geleen, The Netherlands

(Received in UK 3 April 1973; accepted for publication 10 May 1973)

Acylperoxynitrates $(R-C-OONO_2)$ are known constituents of photochemical $smog^1$. These compounds are supposed to be formed from acylperoxy radicals and NO_2 . Although alkylperoxy radicals undoubtedly play an important role in photochemical smog formation²) and gasphase reaction of these radicals with NO_2 seems likely³, alkyl peroxynitrates (I) have thus far not been detected in photochemical smog. From the investigations of Lachowicz⁴) and ourselves⁵ we learned that β -nitroalkyl peroxynitrates are relatively stable compounds. Considering this it seemed worthwhile to try to synthesize some simple alkyl peroxynitrates by reaction of the alkylhydroperoxides with N_2O_5 :

The feasibility of the method was first tested for the case $R = t-C_4H_9$. A solution of $N_2O_5^{-6}$ (in CHCl $_3$) was slowly added to a cooled (-20°) solution of t-BuOOH in CCl $_4$ in the presence of excess dry NaHCO $_3^{-\frac{1}{2}}$. After removal of the solids the resulting solution showed a strong IR band at 1692 cm $^{-1}$ and a sharp NMR singlet at δ 1.36 indicating 4,5) the presence of Ia. Removal of the solvent and distillation yielded a liquid (bp $_{11} \sim 22^{\circ}$) which was shown by NMR to consist of 70 mole % of Ia and 30 mole % of t-BuONO $_2^{-7}$) (δ 1.57). An IR spectrum obtained after sucking the vapour above

 $^{^{\}bigstar)}$ Without NaHCO3 the alkylperoxynitrate is rapidly destroyed by the nitric acid which is formed in the reaction.

the liquid mixture (at 23°) into an evacuated cell (10 cm) showed a sharp band at 1712 cm⁻¹ (-OONO₂) clearly indicating the presence of Ia in the vapour. Other bands indicated that t-BuONO₂ and traces of residual solvent were also present in the vapour. By following the decay of the band at 1712 cm⁻¹ it was found that the half life of Ia in the gas phase (estimated pressure 5-10 mm Hg) was about 30 hours. In CHCl₃/CCl₄ solution at 23° the half life was about 11 days (NMR; the only decomposition product detected was t-BuONO₂).

Our method to prepare I was then applied to the more interesting case of R = CH2 (Ib is more likely to be formed in photochemical smog than Ia). Starting from methyl hydroperoxide and using slightly modified reaction conditions (CDCl₂, -28°) a solution of Ib in CDCl₂ was obtained. The NMR spectrum at ~30° only showed one sharp singlet at 6 4.17; the peaks of CH₂OOH were absent. The yield of Ib (conc. 0.4 M) was close to 100 % (CHCl₂ was used as the internal NMR standard). The IR spectrum of the solution at -20° showed a strong band at 1698 cm⁻¹. After standing of the filtered solution at 230 for 4 days the NMR singlet at 6 4.17 and the IR band at 1698 cm⁻¹ had disappeared indicating complete decomposition of Ib. Methyl nitrate 10) was the major decomposition product (0.4 mole per mole of Ib) as indicated by NMR (broad peak at 0 4.11 11), IR (band at 1635 cm 1) and G.L.C. Other decomposition products identified were methanol, dimethoxymethane, paraformaldehyde, methyl formate and strong acid (probably HNO2). Attempts to isolate Ib and to obtain a gas phase IR spectrum have thus far failed because volatilities of Ib and CDCl2 appeared to be very similar.

REFERENCES

- E.R. Stephens in "Advances in Environmental Sciences", J.N. Pitts and R.L. Metcalf (Editors), Vol. I, p. 119 (Wiley Interscience, 1969)
- 2) J.A. Kerr, J.G. Calvert and K.L. Demerjian, Chem. in Brittain, $\underline{8}$, 252 (1972) and references cited therein
- 3) C.W. Spicer, A. Villa, H.A. Wiebe and J. Heicklen, J. Am. Chem. Soc., 95, 15 (1973)
- 4) D.R. Lachowicz and K.L. Kreuz, J. Org. Chem. <u>32</u> (1967) 3885
- 5) E.F.J. Duynstee, J.L.J.P. Hennekens, W. van Raayen and W. Voskuil, Tet. Lett., 3197 (1971); Rec. Trav. Chim., to be published
- 6) G. Brauer, "Handbuch der präparative anorganische Chemie", p. 439 (Enke Verlag, Stuttgart, 1960); "Inorganic Synthesis", Vol. III, p. 78 (McGraw-Hill, 1950)
- 7) J.W. Baker and D.M. Easty, J. Chem. Soc., 1193 (1952)
- 8) W. Eggersglüss, "Organische Peroxyde", p. 78 (Verlag Chemie, Weinheim, 1951)
- 9) A.D. Kirk, Can. J. Chem., 43, 2236 (1965)
- 10) "Organic Syntheses", Coll. Vol. II, p. 412
- 11) P.R. Hammond, J. Chem. Soc. 1370 (1962)

^{*)} Prepared according to a known procedure $^{8)}$. Because CH3OOH is a hazardous compound $^{9)}$ only small portions (<5 g) of the crude product were distilled; purity of the samples obtained was 90 % as determined by NMR (6 CDCl3 3.89) and iodometric titration.